47 research outputs found

    MIMO Gaussian Broadcast Channels with Confidential and Common Messages

    Full text link
    This paper considers the problem of secret communication over a two-receiver multiple-input multiple-output (MIMO) Gaussian broadcast channel. The transmitter has two independent, confidential messages and a common message. Each of the confidential messages is intended for one of the receivers but needs to be kept perfectly secret from the other, and the common message is intended for both receivers. It is shown that a natural scheme that combines secret dirty-paper coding with Gaussian superposition coding achieves the secrecy capacity region. To prove this result, a channel-enhancement approach and an extremal entropy inequality of Weingarten et al. are used.Comment: Submitted to 2010 IEEE International Symposium on Information Theory, Austin, Texa

    New Results on Multiple-Input Multiple-Output Broadcast Channels with Confidential Messages

    Full text link
    This paper presents two new results on multiple-input multiple-output (MIMO) Gaussian broadcast channels with confidential messages. First, the problem of the MIMO Gaussian wiretap channel is revisited. A matrix characterization of the capacity-equivocation region is provided, which extends the previous result on the secrecy capacity of the MIMO Gaussian wiretap channel to the general, possibly imperfect secrecy setting. Next, the problem of MIMO Gaussian broadcast channels with two receivers and three independent messages: a common message intended for both receivers, and two confidential messages each intended for one of the receivers but needing to be kept asymptotically perfectly secret from the other, is considered. A precise characterization of the capacity region is provided, generalizing the previous results which considered only two out of three possible messages.Comment: Submitted to the IEEE Transactions on Information Theory, 11 pages, 5 figure

    Multiple Access Channels with Generalized Feedback and Confidential Messages

    Full text link
    This paper considers the problem of secret communication over a multiple access channel with generalized feedback. Two trusted users send independent confidential messages to an intended receiver, in the presence of a passive eavesdropper. In this setting, an active cooperation between two trusted users is enabled through using channel feedback in order to improve the communication efficiency. Based on rate-splitting and decode-and-forward strategies, achievable secrecy rate regions are derived for both discrete memoryless and Gaussian channels. Results show that channel feedback improves the achievable secrecy rates.Comment: To appear in the Proceedings of the 2007 IEEE Information Theory Workshop on Frontiers in Coding Theory, Lake Tahoe, CA, September 2-6, 200
    corecore